

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 2394-2403

JOURNAL OF SOLID STATE CHEMISTRY

http://elsevier.com/locate/jssc

Subsolidus phase relations and crystal structure of compounds in the PrO_x -CaO-CuO system

G.B. Song,^{a,b,*} C.Q. Han,^a X.L. Chen,^a J.K. Liang,^{a,c} Q.L. Liu,^a Y.Q. Zhou,^a F.S. Liu,^{a,b} and G.H. Rao^a

^a Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Box 603, Beijing 100080, People's Republic of China ^b School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621002, People's Republic of China ^c International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

Received 20 August 2003; received in revised form 9 December 2003; accepted 3 March 2004

Abstract

The subsolidus phase relations of the PrO_x-CaO-CuO pseudo-ternary system sintered at 950-1000°C have been investigated by X-ray powder diffraction. In this system, there exist one compound Ca₁₀Pr₄Cu₂₄O₄₁, one Ca₂Pr₂Cu₅O₁₀-based solid solution, seven three-phase regions and two two-phase regions. The crystal structures of Ca₁₀Pr₄Cu₂₄O₄₁ and Ca₂Pr₂Cu₅O₁₀-based solid solution have been determined. Compound Ca₁₀Pr₄Cu₂₄O₄₁ crystallizes in an orthorhombic cell with space group $D_{2h}^{20} - Cccm$, Z = 4. Its lattice parameters are a = 11.278(2) Å, b = 12.448(3) Å and c = 27.486(8) Å. The crystal structure of Ca₂Pr₂Cu₅O₁₀based solid solution is an incommensurate phase based on the orthorhombic NaCuO₂ type subcell. The lattice parameters of the subcell of the Ca_{2.4}Pr_{1.6}Cu₅O₁₀ are $a_0 = 2.8246(7)$ Å, $b_0 = 6.3693(5)$ Å, $c_0 = 10.679(1)$ Å, and those of the orthorhombic superstructure are with $a = 5a_0$, $b = b_0$, $c = 5c_0$. The Ca_{2.4}Pr_{1.6}Cu₅O₁₀ structure can also be determined by using a monoclinic supercell with space group $C_{2h}^5 - P2_1/c$, Z = 4, $a = 5a_0$, $b = b_0$, $c = c_0/\sin\beta$ and $\beta = 104.79(1)^\circ$ or $136.60(1)^\circ$, $V = 5a_0b_0c_0$.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Phase relations; Crystal structure; Pr-Ca-Cu-O system; Ca₁₀Pr₄Cu₂₄O₄₁; Ca₂Pr₂Cu₅O₁₀ solid solution

1. Introduction

Since the discovery of high $T_{\rm C}$ oxide superconductors such as ${\rm La}_{2-x}{\rm Ba}_x{\rm CuO_4}$ [1], YBa₂Cu₃O₇ [2,3], YBa₂Cu₄O₈ [4,5], and Y₂Ba₄Cu₇O₁₅ [4,6], a series of phase relations of R_2O_3 -BaO-CuO systems (R=rare earth elements) have been extensively investigated for exploring new superconductors and for improving the synthesizing processes. In many systems isostructural superconductors $RBa_2Cu_3O_7$ (R=lanthanide elements except for Pm and Ce) [7], $RBa_2Cu_4O_8$ (R=Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm) [8] and $R_2Ba_4Cu_7O_{15}$ (R=Eu, Gd, Dy, Ho, Er, Yb) [9,10] were found to exist. The phases $RBa_2Cu_4O_8$ and $R_2Ba_4Cu_7O_{15}$ were synthesized in high

E-mail addresses: gbsong@aphy.iphy.ac.cn (G.B. Song),

jkliang@aphy.iphy.ac.cn (J.K. Liang).

oxygen pressure. Larger the radius of rare earth ions higher, the synthesizing oxygen pressure. However, the compound PrBa₂Cu₃O₇ does not exhibit superconducting properties. It is known that a partial substitution of Ca for Pr in PrBa₂Cu₃O₇ has a notable influence on its electronic transport properties. Superconductivity was observed in $Pr_{1-x}Ca_xBa_2Cu_3O_7$ (x = 0.5) synthesized under high pressures with transition temperature $T_{\rm C} = 97 - 115 \,\mathrm{K}$ [11,12]. This shows that the Ca cations may play an important role in inducing the superconductivity. We had investigated in details the phase relations of PrO_x–BaO–CuO pseudo-ternary system, the solubility and the structure of $Pr_{1+x}Ba_{2-x}Cu_3O_7$ solid solutions [13]. In order to understand the effects of the Ca-ion and to find new functional materials in the Pr-Ca-Cu-O system, we study the phase relation and the crystal structure of compounds in PrO_x-CaO-CuO system (the content of oxygen and average valence of Pr may be varied in the synthesized process) by means of X-ray powder diffraction.

^{*}Corresponding author. Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Box 603, Beijing 100080, People's Republic of China. Fax: +861082649531.

^{0022-4596/\$ -} see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.03.002

2. Experimental

All samples of different compositions were synthesized by conventional solid-state reaction method in air. The purity of all starting materials Pr₆O₁₁, CuO and CaCO₃ is higher than 99.9 wt%. The dry raw powders with proper amounts were weighted, thoroughly mixed and ground in an agate mortar, and then pre-sintered in air at 850°C for about 12 h. The pre-sintered raw powders after regrinding and remixing were pressed into disks with a diameter of 10mm and a thickness of 1-2 mm, and the disks were again sintered at 950-1000°C for 48 h in air, and then cooled in furnace to the room temperature. The above processes were repeated until homogeneity of samples was reached monitored by X-ray diffraction. Care was taken for the CaO-rich samples, since they were unstable and tended to form the basic calcium carbonate after absorbing the carbon dioxide and water in air. The CaO-rich samples after preparing must be kept in a desiccator before using for X-ray diffraction experiments. 58 samples of PrO_x-CaO-CuO system were prepared and their compositions are shown in Fig. 1.

X-ray powder diffraction data were collected on a Rigaku Rint 2500 X-ray diffractometer (200 mA × 40 kV) with CuK α radiation and a graphite monochromator. The data for structural analysis and accurate determination of lattice parameters were recorded by a step scan mode with a scanning step of $2\theta = 0.02^{\circ}$ and a sampling time of 2 s. Pure Si was added to the samples as an internal standard. The phase identifications were carried out by the continuous scan mode with a rate of $2\theta = 4^{\circ}/\text{min}$.

The electron diffractions of some samples were carried out by transmission electron microscopy

Fig. 1. Subsolidus phase relation of PrO_x -CaO-CuO pseudo-ternary system.

(TEM). These specimens were ground under acetone and dispersed on to holey carbon grids. The electron diffraction patterns were collected by using a H-9000 NA TEM at 300 kV.

3. Results and discussion

3.1. Subsolidus phase relations

In the PrO_x -CuO system, two compounds $PrCuO_2$ and Pr_2CuO_4 were reported. Compound $PrCuO_2$ [14], which was synthesized by using starting materials Cu_2O and Pr_2O_3 in reducing atmosphere, belongs to a trigonal system with space group $R\bar{3}m$ and its lattice parameters a = 3.75 Å, and c = 17.09 Å. Compound Pr_2CuO_4 crystallizes in a tetragonal unit cell with space group I4/mmm and K_2NiF_4 type structure [15], its lattice parameters are a = 3.963 Å, and c = 12.233 Å. Under our experimental conditions only compound Pr_2CuO_4 was identified. Its lattice parameters a = 3.961(2) Å, and c = 12.214(6) Å are consistent with the previously reported values [15].

In the PrO_x -CaO system, no compound was observed in our investigation and was reported previously. Tikhonov et al. studied the effect of CaO doping on electro-conductivity in Y₂O₃-PrO_x system [16].

In the CaO–CuO system, two compounds Ca_2CuO_3 and CaCu₂O₃ were prepared at the atmospheric pressure [17] and one more compound $CaCuO_{2-\delta}$ can be synthesized under high-pressure conditions [18]. Ca₂CuO₃ belongs to an orthorhombic system with space group *Immm* and its lattice parameters are a = 12.239 Å, b = 3.779 Å and c = 3.259 Å. Compound CaCu₂O₃ also possesses an orthorhombic unit cell with space group Pmmm and its lattice parameters are a = 9.85 Å, b = 4.11 Å and c = 3.47 Å [17]. Under our experiment conditions only one compound, Ca₂CuO₃, was identified. These results coincide with the previous report [19] and collection of phase diagrams for ceramists [20]. After indexing Ca_2CuO_3 , its structure is confirmed to be the same as the reported one [17]. Its lattice parameters are a = 12.208(6) A, b = 3.768(2) A and c = 3.249(2) A.

Phase identification of samples in the pseudo-ternary system PrO_x -CaO-CuO was carried out by X-ray powder diffraction. The solid solubility was determined by means of disappearing-phase method. The subsolidus phase relations of PrO_x -CaO-CuO pseudo-ternary system under our synthesizing condition are shown in Fig. 1. There exist one compound, Ca₁₀Pr₄Cu₂₄O₄₁, and one solid solution based on composition Ca₂Pr₂Cu₅O₁₀.

Compound $Ca_{10}Pr_4Cu_{24}O_{41}$ belongs to an orthorhombic system with space group $D_{2h}^{20} - Cccm$. $Ca_2Pr_2Cu_5O_{10}$ is an incommensurate phase based on the orthorhombic NaCuO₂-type subcell [21–23]. The result of phase identification according to XRD data shows that the sample with the nominal composition $Ca_{1.8}Pr_{2.2}Cu_5O_{10}$ in our synthesizing condition consists of two phases: Ca₂Pr₂Cu₅O₁₀-based solid solution and trace CaO, while the sample with nominal composition $Ca_{1.6}Pr_{2.4}Cu_5O_{10}$ contains three phases: Ca₂Pr₂Cu₅O₁₀-based solid solution, very little of CaO and Pr_2CuO_4 (see Fig. 3). Based on the charge neutrality and the disappearing-phase method, the solid solubility of the Ca₂Pr₂Cu₅O₁₀-based solid solution can be determined to range from about $Ca_{2.4}Pr_{1.6}Cu_5O_{10}$ (partial $Pr^{3\,+}$ or/and $Cu^{2\,+}$ are changed to $Pr^{4\,+}$ or/and Cu^{3+} , respectively) to about $Ca_{3/2}Pr_{7/3}Cu_5O_{10}$ (the content of oxygen cannot exceed 10 in a formula unit and the valence of Pr or Cu cannot be less than Pr³⁺ or Cu²⁺, respectively), according to CaO similar diffraction intensity for both samples Ca_{1.8}Pr_{2.2}Cu₅O₁₀ and $Ca_{1.6}Pr_{2.4}Cu_5O_{10}$ (see Fig. 3): $Ca_{1.8}Pr_{2.2}Cu_5O_{10} =$ $Ca_{1.7}Pr_{2.2}Ca_5O_{10} + 0.1 CaO$ and $Ca_{1.6}Pr_{2.4}Cu_5O_{10} =$ $0.991 Ca_{3/2}Pr_{7/3}Cu_5O_{10} + 0.113 CaO + 0.045 Pr_2CuO_4.$

The subsolidus phase relation of PrO_x-CaO-CuO system under our synthesizing condition is shown in Fig. 1. It contains one compound Ca₁₀Pr₄Cu₂₄O₄₁ and one Ca2Pr2Cu5O10-based solid solution, and can be divided into 7 three-phase regions (I-VII) and 2 twophase regions (VIII and IX).

3.2. Crystal structure of $Ca_{10}Pr_4Cu_{24}O_{41}$

Due to the similarity of chemical formula and XRD pattern between $Ca_{10}Pr_4Cu_{24}O_{41}$ and $Sr_{14-x}Ca_xCu_{24}O_{41}$ compounds, the XRD pattern collected 2θ from 10° to 120° of Ca₁₀Pr₄Cu₂₄O₄₁ was successfully indexed by way of trial and error method program [24]. The d-spacings and 2θ in the range $10^{\circ} < 2\theta < 73^{\circ}$ are listed in Table 1. It belongs to an orthorhombic system with lattice constants a = 11.278(2) Å, b = 12.448(3) Å and c = 27.486(7) Å. The reflection conditions are: h + k =2n for (hkl), k, l = 2n for (0kl) and h, l = 2n for (h0l), from which one infers that the unit cell is an orthorhombic C-centered lattice and the possible space group is $D_{2h}^{20} - Cccm$ or $C_{2v}^{13} - Ccc2$. The XRD pattern indicates that the Ca₁₀Pr₄Cu₂₄O₄₁

is isostructural to $Sr_{14-x}Ca_xCu_{24}O_{41}$ with space group *Cccm* [25]. The number of formula unit per unit cell in Ca₁₀Pr₄Cu₂₄O₄₁ structure is 4, i.e., a unit cell contains 40Ca + 16Pr + 96Cu + 164O. The ideal atomic distributions on $y = 0, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}$ sections are shown in Fig. 2. In the structural refinement, the oxygen atoms are fixed to their ideal positions because of their smaller atomic scattering power, and the temperature factors were taken as 1 Å^2 , 0.7 Å^2 , 0.7 Å^2 and 0.5 Å^2 for O, Cu, Ca and Pr, respectively. The atomic parameters of all cations are refined by the Rietveld method using DBWS-9411 program [26]. The final atomic parameters of all ions are listed in Table 2 with $R_p = 6.5\%$,

Table 1
Observed and calculated $2\theta_{obs}$, d_{obs} , $2\theta_{calc}$, d_{calc} and intensities I_{obs} , I_{calc}
of $Ca_{10}Pr_4Cu_{24}O_{41}$

hkl	$2\theta_{\rm obs}$	$d_{\rm obs}$	$2\theta_{\text{calc}}$	d_{calc}	Iobs	Ical
020	14.22	6.222	14.22	6.224	7	7
200	15.72	5.632	15.70	5.639	2	2
204	20.53	4.322	20.36	4.359	2	8
220	21.22	4.183	21.24	4.179	2	5
131	23.29	3.817	23.05	3.855	2	3
133	24.85	3.580	24.82	3.584	2	2
206	25.09	3.547	25.02	3.556	2	3
117			25.04	3.554		3
313	26.60	3.348	26.58	3.351	2	4
040	28.66	3.112	28.66	3.112	48	29
044			31.53	2.835		3
400	31.68	2.822	31.70	2.820	7	8
137	32.34	2.766	32.35	2.765	47	65
240	32.84	2.725	32.84	2.725	100	100
317	33.77	2.652	33.76	2.653	39	66
1110	34.25	2.616	34.32	2.611	3	6
420	34.92	2.567	34.91	2.568	10	13
244	35.52	2.525	35.41	2.533	2	4
1111	37.51	2.396	37.54	2.394	2	2
153	38.30	2.348	38.27	2.350	2	2
048	38.94	2.311	39.03	2.306	2	1
337	39.69	2.269	39.64	2.272	2	1
1310	40.00	2.252	40.11	2.246	2	4
3110	41.19	2.190	41.30	2.184	5	2
248	42.40	2.130	42.30	2.135	2	1
440	43.25	2.090	43.25	2.090	15	15
157	43.74	2.068	43.76	2.067	23	27
444	45 31	2.000	45 33	1 999	2	
0014	46.21	1 963	46.21	1.963	12	21
3310	46.61	1.903	46.61	1.905	8	11
600	48.38	1.880	48.38	1.947	12	10
0214	48 51	1.875	48.60	1.872	7	11
2014	49.01	1.857	48.99	1.858	2	2
1510	50.02	1.822	50.05	1.821	2	2
620	50.62	1.800	50.05	1 799	14	20
2214	51.41	1.000	51.38	1.777	2	20
537	51.59	1.770	51.50	1.779	15	14
460	55.04	1.770	54.90	1.705	15	1.
3510	55 33	1.650	55 44	1.656	3	-
5310	57.44	1.603	57.24	1.608	5	6
2414	57.83	1.005	57.83	1.008	10	16
0.80	50.25	1.556	50.25	1.595	21	10
557	60.11	1.530	60.11	1.530	21	10
557 777	62.25	1.330	62.25	1.330	14	11
5 / / 4 4 1 4	62.55	1.400	65.12	1.400	14	11
+ 4 1 4 5 5 1 0	65.15	1.451	(5.20	1.431	12	12
0614	65.29	1.428	65.29	1.428	2	4
0614	65.44	1.425	65.39	1.420	3	4
800	66.23	1.410	00.23	1.410	2	2
131	66.60	1.403	66.60	1.403	4	8
000	0/.14	1.393	0/.14	1.393	8	8
820	08.14	1.3/5	08.14	1.3/3	4	4
480	08.88	1.362	08.88	1.362	2	2
6014	69.11	1.358	69.11	1.358	9	11
0220	69.94	1.344	70.06	1.342	2	2
6214	/1.03	1.326	/0.97	1.327	6	6
/310	71.59	1.317	71.53	1.318	4	1
2220	72.29	1.306	72.35	1.305	2	2

Note: The relative intensities less than 2% in the region $10^{\circ} < 2\theta < 73^{\circ}$ are not listed in this table.

Fig. 2. Structure of Ca₁₀Pr₄Cu₂₄O₄₁ along *b*-axis at different y sections.

 $R_{\rm wp} = 8.96\%$ and $R_{\rm exp} = 2.25\%$. The diffraction intensities calculated by the LAZY program according to the above-refined atomic parameters (see Table 2) are also listed in Table 1 for comparison with observed intensities, in which the diffraction peaks with intensities below 2/100 in the pattern are not included. As shown in Table 1 for $2\theta < 73^{\circ}$ the calculated and the observed intensities I and planar distances d basically coincide with each other. It shows that the structure of Ca₁₀Pr₄Cu₂₄O₄₁ is correct. From the refined results listed in Table 2, we can evaluate the bond-valence of ions according to the interionic distance between cation and oxygen by Brown's empirical bond-valence method [27,28]. They are also listed in Table 2. The bondvalences of Pr, Ca, Cu and O are about 2.95, 1.97-2.01, 1.95–2.17 and 1.85–2.25, respectively. The above results indicate that the structure model and the atomic parameters are reasonable.

The structure of $Ca_{10}Pr_4Cu_{24}O_{41}$, which is considered as a commensurate phase, is better described as two interpenetrating subcells: one with (Ca, Pr) layer- $(CuO_{3/3}O_{1/2})$ sheets—(Ca, Pr) layer in an orthorhombic subcell with dimensions of a = 11.278(2) Å, b =12.448(3)Å, c(s) = 3.9266(1)Å, and the other subcell with layers of the infinite $[CuO_{4/2}]$ chains also in an orthorhombic cell having identical a and b, but with c(c) = 2.7486(1) A. The coordination numbers Cu by oxygen in two subcells are both 4. The difference of the two subcells lies in the manner of linkage of the square planar cupper oxygen units. In the former case they form planes perpendicular to b-axis, and in the latter case they form infinite chain along the *c*-axis. They are then connected to one another via a layer of (Ca, Pr) ions. These two subcells combine to form the commensurate phase $Ca_{10}Pr_4Cu_{24}O_{41}$ at 7c(s) (sheet) = 27.486 Å and 10c(c)(chain) = 27.486 Å. Therefore the X-ray diffraction pattern for Ca₁₀Pr₄Cu₂₄O₄₁ exhibit strong reflections with l = 7n or 10n.

The lattice parameters of $Sr_8Ca_6Cu_{24}O_{41}$ are a = 11.375 Å, b = 12.927 Å, c = 27.453 Å, and among them

Table 2 Refined and ideal atomic parameters of $Ca_{10}Pr_4Cu_{24}O_{41}$

Atoms	Wyckoff position	x	у	Ζ	ΣV
Pr	16 <i>m</i>	0.2570 (0.250)	0.1274 (0.125)	0.1350 (0.143)	2.95
Ca(1)	16 <i>m</i>	0.7510 (0.750)	0.1305 (0.125)	0.0725 (0.072)	1.98
Ca(2)	16 <i>m</i>	0.7527 (0.750)	0.1259 (0.125)	0.2299 (0.214)	1.97
Ca(3)	8/	0.2387 (0.250)	0.1362 (0.125)	0.000	2.01
Cu(1)	16 <i>m</i>	0.0845 (0.086)	0.2553 (0.250)	0.0716 (0.071)	2.03
Cu(2)	16 <i>m</i>	0.0858 (0.086)	0.2502 (0.250)	0.2178 (0.213)	2.06
Cu(3)	16 <i>m</i>	0.0880 (0.086)	0.2431 (0.250)	0.3560 (0.357)	2.05
Cu(4)	81	0.9135 (0.914)	0.2261 (0.250)	0.000	1.95
Cu(5)	8 <i>i</i>	0.000	0.000	0.0617 (0.050)	2.12
Cu(6)	8 <i>i</i>	0.000	0.000	0.1570 (0.150)	2.13
Cu(7)	8 <i>j</i>	0.500	0.000	0.1224 (0.100)	2.04
Cu(8)	8 <i>j</i>	0.500	0.000	0.1894 (0.200)	2.12
Cu(9)	4d	0.500	0.000	0.000	1.98
Cu(10)	4a	0.000	0.000	0.250	2.17
O(1)	16 <i>m</i>	(0.086)	(0.250)	(0.143)	2.25
O(2)	16 <i>m</i>	(0.086)	(0.250)	(0.286)	2.13
O(3)	16 <i>m</i>	0.086	0.250	(0.429)	2.07
O(4)	8 <i>l</i> (<i>xy0</i>)	(0.086)	(0.250)	0.000	2.09
O(5)	8k	0.250	0.250	(0.071)	1.85
O(6)	8 <i>k</i>	0.250	0.250	(0.214)	2.10
O(7)	8 <i>k</i>	0.250	0.250	(0.357)	2.05
O(8)	4f	0.750	0.250	0.000	2.02
O(9)	16 <i>m</i>	(0.118)	(0.000)	(0.100)	1.98
O(10)	16 <i>m</i>	(0.118)	(0.000	(0.200)	1.95
O(11)	16 <i>m</i>	(0.382)	(0.000)	(0.050)	2.06
O(12)	16 <i>m</i>	(0.382)	(0.000)	(0.150)	1.91
O(13)	8g	(0.382)	0.000	0.250	2.02
O(14)	81	(0.118)	0.000	0.000	2.17

Note: (1) The occupancies of all atoms are 1; (2) the temperature factors of Pr, Ca, Cu and O are fixed at 0.5 Å^2 , 0.7 Å^2 , 0.7 Å^2 , and 1 Å^2 , respectively; (3) the ideal positions of atoms are shown in the parentheses; (4) ΣV present bond valences of ions.

a and *b* are slightly larger than that of $Ca_{10}Pr_4 Cu_{24}O_{41}$, while *c* is near to that of $Ca_{10}Pr_4 Cu_{24}O_{41}$. It is known from its structure (see Fig. 2), the dimension of *c* is only related to CuO₄ chains and sheets, and *a* and *b* (specially *b*) are notably dependent with the dimension of atoms, while ionic radius of Sr^{2+} is larger than that of Pr^{3+} or Ca^{2+} .

3.3. Crystal structure of $Ca_2Pr_2Cu_5O_{10}$ -based solid solution

The crystal structure of $Ca_2Pr_2Cu_5O_{10}$ is an incommensurate one based on the orthorhombic NaCuO₂type structure, and isostructural to $Ca_2R_2Cu_5O_{10}$ (R=Y, Nd, Sm, Gd, Tm) [29,30]. The space group of the fundamental subcell is *Fmmm*. Davies [29] described the structure of $Ca_2R_2Cu_5O_{10}$ (R=Y, Nd, Gd) in detail, and deduced the relationship between the incommensurate orthorhombic subcell and the commensurated superstructure belonging to the orthorhombic or the monoclinic systems.

In order to keep a constant oxygen content as 10 atoms in one formula unit and the valence of Pr as Pr^{3+} or Pr^{4+} in the homogeneous range of $Ca_2Pr_2Cu_5O_{10}$ -based solid solution, in the Ca-rich region (i.e.,

Ca/Pr>1), the composition of solid solution can be expressed as a general formula $Ca_{2+x}Pr_{2-x}Cu_5O_{10}$, and in the Pr-rich region (i.e., Ca/Pr<1) as $Ca_{3y/2}Pr_{(10-3y)/3}Cu_5O_{10}$.

The X-ray powder diffraction patterns of samples $Ca_{2+\delta}Pr_{2-\delta}Cu_5O_{10}$ with $\delta = 0.4, 0.2, 0, -0.2$ and -0.4are shown in Fig. 3. From Fig. 3, one can see that one set of diffraction peaks change their positions slightly and can be indexed using an orthorhombic cell with space group Fmmm. With increasing of Pr content, the other set of the reflections, as indicated by "s", vary their positions considerably, and their distance between the pair of diffraction lines "s" decreases. These reflections cannot be indexed by using conventional method, but can be indexed by using fractional Miller indexes for h and l based on the lattice parameters of subcell. According to Davis' structural model [29], the first pair of incommensurate reflections observed close to $2\theta = 30^{\circ}$ can be indexed as $(1 - \delta h, 1, 1 - \delta l)$ and $(1 - \delta h, 1)$ 1, $1 + \delta l$, the second pair of incommensurate reflections situated around $2\theta = 38^{\circ}$ can be indexed as $(1-\delta h, 1,$ $(3-\delta l)$ and $(1-\delta h, 1, 3+\delta l)$ and the third pair of incommensurate reflections observed close to $2\theta = 51^{\circ}$ can be indexed as $(1-\delta h, 3, 1-\delta l)$ and $(1-\delta h, 3, 1+\delta l)$, respectively. The positions of incommensurate reflections were used to calculate δh and δl :

$$\delta l = (c^2/4)(1/d^2_{(1-\delta h,1,1+\delta l)} - 1/d^2_{(1-\delta h,1,1-\delta l)}),$$

$$\delta l = (c^2/4)(1/d^2_{(1-\delta h,3,1+\delta l)} - 1/d^2_{(1-\delta h,3,1-\delta l)}),$$

or

$$\delta l = (c^2/12)(1/d^2_{(1-\delta h,1,3+\delta l)} - 1/d^2_{(1-\delta h,1,3-\delta l)})$$

Fig. 3. The X-ray powder diffraction patterns of samples with following compositions: (1) $Ca_{2,4}Pr_{1.6}Cu_5O_{10}$; (2) $Ca_{2,2}Pr_{1.8}Cu_5O_{10}$; (3) $Ca_2Pr_2Cu_5O_{10}$; (4) $Ca_{1.8}Pr_{2.2}Cu_5O_{10}$; and (5) $Ca_{5/3}Pr_{7/3}Cu_5O_{10}$.

Table 3 Lattice parameters of subcell and supercell for Ca₂Pr₂Cu₅O₁₀ based solid solution

 δh was subsequently calculated from the positions of the individual incommensurate diffraction lines. The subcell parameters and δh , δl for the solid solution with different composition are listed in Table 3.

To confirm the validity of the indexing and lattice parameters described above, several samples were investigated by using electron diffraction method. Fig. 4 shows the electron diffraction pattern of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ along the [010] axis of the subcell. The rectangle presented by thin lines and parallelogram by thick lines correspond to the reciprocal orthorhombic subcell and monoclinic supercell, respectively. For the orthorhombic subcell there exist some superstructure satellite reflections around each of the fundamental reflections. They can all be indexed by using of fractional Miller indices as $(h_0 \pm n\delta h, k_0, l_0 \pm n\delta l)$ for h_0 , $k_0, l_0 = n + 1$ and $(h_0 \pm 2n\delta h, k_0, l_0 \pm 2n\delta l)$ for $h_0, k_0, k_0, l_0 \pm 2n\delta l$ $l_0 = 2n$, where h_0 , k_0 , l_0 are Miller indices of the subcell and $\delta h = 0.2$, $\delta l = 0.2$ for Ca_{2.4}Pr_{1.6}Cu₅O₁₀. For example, around the transmitted beam (000) the superstructure satellite spots correspond to $(\pm 2\delta h, 0, \pm 2\delta l)$, i.e. $(\pm 0.4, 0, \pm 0.4)$, and around the (202) fundamental reflection, to $(2\pm 2\delta h, 0, 2\pm 2\delta l)$. The ratio c_0/a_0 of the subcell and δh , δl derived from Fig. 4 coincide with the results obtained by X-ray powder diffraction. It shows that the indexing results by the orthorhombic subcell

Composition	Ca2.4Pr1.6Cu5O10	Ca2.2Pr1.8Cu5O10	$Ca_2Pr_2Cu_5O_{10}$	Ca1.7Pr2.2Cu5O10	Ca _{3/2} Pr _{7/3} Cu ₅ O ₁₀
Orth. subcell					
a_0 (Å)	2.8246(7)	2.8252(7)	2.8257(7)	2.8176(7)	2.8143(7)
b_0 (Å)	6.3693 (5)	6.381(1)	6.392(1)	6.390(1)	6.392(1)
c_0 (Å)	10.679 (4)	10.698(1)	10.718(1)	10.718(1)	10.720(1)
$ \begin{array}{c} V_0 (\mathring{A}^3) \\ \delta h \end{array} $	192.13 0.2	192.86 0.2	193.59 0.2	192.97 0.2	192.84 0.2
δl	0.2	0.185	0.15	0.1	0
Orth. supercell					
a (Å)	5 a_0				
b (Å)	b_0	b_0	b_0	b_0	b_0
c (Å)	5 c ₀	5.4 c_0	6.67 c_0	10 c_0	c_0
$V(\text{\AA}^3)$	25 V ₀	27 V ₀	33.3 V ₀	50 V ₀	5 V ₀
Monoc. supercell					
a (Å)	14.123(2)	14.126(4)	14.129(4)	14.088(4)	14.071(4)
b (Å)	6.3693 (5)	6.381 (1)	6.392 (1)	6.390 (1)	6.392 (1)
<i>c</i> (Å)					
Α	11.045(1)	11.012(2)	10.925(2)	10.807(2)	10 720(2)
В	15.543(1)	15.715(2)	16.096(1)	16.602(1)	10.720(2)
β (°) Α	104.79(1)	103.73(1)	101.18(1)	97.35(1)	
D	126 (0/1)	127 10(1)	120.25(1)	120 70(1)	90*
$\stackrel{\mathbf{B}}{V}(\overset{\circ}{\mathbf{A}}^{3})$	136.60(1) 960.61(5 V ₀)	137.10(1) 964.25(5 V ₀)	138.25(1) 967.94(5 V ₀)	139.79(1) 964.88(5 V ₀)	964.18(5 V ₀)

Note: *In the general it must be expressed as orthorhombic supercell whose volume of unit cell is same to one of monoclinic supercell.

Fig. 4. The electron diffraction pattern of Ca2_{.4}Pr_{1.6}Cu₅O₁₀ along *b*-axis.

Table 4											
Observed	and	calculated	spacings	d	and	intensities	of	Ca	$_{4}Pr_{1}$	6Cus	O10

No.	d_{calc} (Å)	$d_{\rm obs}$ (Å)	Iobs	Icalc	Subcell	Orthorhombic supercell	Monoclinic superc	ell (<i>h k l</i>)
					hkl	hkl	"A"	"В"
1	3.184	3.184	4	5	020	020	020	020
2	3.008	3.006	13	23	0.810.8	414	410	414
3	2.916	2.914	13	15	0.811.2	416	412	$41\overline{2}$
4	2.735	2.735	100	100	022	0210	022	022
5	2.670	2.669	24	25	004	0 0 20	004	004
6	2.509	2.509	12	13	111	515	510, 512	$51\overline{3}, 51\overline{5}$
7	2.399	2.397	8	11	0.832.8	4114	412	41 6
8	2.266	2.266	9	6	0.813.2	4116	414	410
9	2.090	2.090	27	18	113	5115	$512, 51\overline{4}$	$51\overline{1}$, $51\overline{7}$
10	2.046	2.046	2	6	024	0 2 20	024	024
11	1.802	1.802	10	10	0.830.8	434	414,430	418, 434
12	1.782	1.782	8	4	0.831.2	436	432	43 2
13	1.710	1.709	3	2	0.815.2	4126	$41\bar{6}$	412
14	1.704	1.704	2	1	105	5025	$506, 50\overline{6}, 315$	$80\bar{8}$
15	1.676	1.676	5	7	131	535	$530, 53\overline{2}$	$53\overline{3}$, $53\overline{5}$
16	1.646	1.645	15	4	115	5125	$514, 51\overline{6}, 432$	511, 516, 436
17	1.592	1.592	10	10	040	040	040	040
18	1.554	1.553	12	13	026	0230	026,	026
19	1.532	1.532	7	1	133	5315	532, 534	53 1,53 7

Note: The relative intensities less than 2% in region $25^{\circ} < 2\theta < 60^{\circ}$ are not listed in this table.

shown in Table 4 are correct. For the monoclinic supercell there exist two selections: "A" and "B" as shown in Fig. 4. The monoclinic supercell "A" and "B" have the same unit cell volume, but different angle β . For the monoclinic supercell "A", $\beta = 180^{\circ} - \tan^{-1}(c \, \delta h/a \, \delta l)$ and for the monoclinic supercell "B", $\beta = 180^{\circ} - \tan^{-1}(c \, \delta h/a (1 - \delta l))$.

The lattice constants of monoclinic supercell are related to subcell parameters: $a_{\text{mon}} = a_{\text{sub}}/\delta h$, $b_{\text{mon}} = b_{\text{sub}}$, $c_{\text{mon}} = c_{\text{sub}}/\sin\beta$. All reflections can also be indexed using monoclinic supercell. The lattice parameters of monoclinic supercell are also listed in Table 3. From Table 3 one can see that with the increasing of Pr content the subcell parameter δh remains constant (0.2),

Fig. 5. Variation of subcell lattice parameters of solid solution based on $Ca_2Pr_2Cu_5O_{10}$ samples with Ca content.

but δl decreases. For the sample with nominal composition Ca_{1.6}Pr_{2.4}Cu₅O₁₀ the split superstructure pair of reflections has converged to one reflection (see Fig. 3), $\delta l = 0$ and $\beta = 90^{\circ}$.

The variation of the subcell lattice parameters a, b, cand V with composition in the Ca₂Pr₂Cu₅O₁₀-based solid solution is shown in Fig. 5. It can be observed that in the Ca-rich region the lattice parameters a, b, c and the volume of the unit cell V decrease when the Ca content increases; in the Pr-rich region the lattice parameters b and c are kept nearly constant, but the lattice parameters a and V decrease with the increasing Pr content. The unit cell volume reaches a maximum value at the ideal composition Ca₂Pr₂Cu₅O₁₀. In the Ca-rich solid solution region with formula $Ca_{2+x}Pr_{2-x}Cu_5O_{10}$ the substitution of Ca^{2+} -ion for Pr^{3+} -ion results in forming Cu^{3+} or Pr^{4+} ions to obtain a valence neutralization in the solid solution $Ca_{2+x}Pr_{2-x}Cu_5O_{10}$, the volume of unit cell decreased with increasing the concentration of Cu^{3+} or Pr^{4+} , because the ionic radii of Cu^{3+} and Pr^{4+} ion are smaller than those of the Cu^{2+} and Pr^{3+} ion, respectively. In the Pr-rich solution region with formula $Ca_{3y/2}Pr_{(10-3y)/}$ $_{3}Cu_5O_{10}$ the unit cell volume also decreases with the increase of the Pr content. Since the content of oxygen is kept constant in the unit formula and the total number of (Ca + Pr) in the unit cell is reduced with increasing the Pr content, there exists a deficiency of Ca or Pr due to valence neutrality in the solid solution, leading to the decreasing unit cell volume.

The crystal structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ compound was determined by the X-ray powder diffraction. The X-ray powder diffraction data of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ are listed in Table 4. They can be indexed by a monoclinic cell. We use monoclinic supercell "B" with parameters a = 14.123(2) Å, b = 6.3693(5) Å, c = 15.543(1) Å, $\beta =$ 136.60(1)° to analyze the crystal structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀. The reflections appear only when l = 2n for (*h0l*) and k = 2n for (0k0). According to these systematic reflection conditions, its space group is exclusively assigned as $C_{2h}^5 - P2_1/c$.

The crystal structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ is isostructural to Ca₂Y₂Cu₅O₁₀ [29]. There are 4 formula unit per unit cell, i.e., each unit cell contains 9.6 Ca + 6.4 Pr + 20 Cu + 40 O. It is supposed that atoms Ca and Pr are distributed disorderly, 16 (Ca + Pr), 20 Cu and 40 O occupy four 4(e), five 4(e) and ten 4(e) equivalent sites of space group $P2_1/c$, respectively. The Rietveld method is used to refine the atomic parameters of the crystal structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ by using DBWS-9411 program [26]. The initial atomic parameters were based

Fig. 6. The observed (upper), calculated (middle) and difference (on bottom) X-ray diffraction patterns for sample $Ca_{2.4}Pr_{1.6}Cu_5O_{10}$.

Table 5 Atomic parameters of $Ca_{2.4}Pr_{1.6}Cu_5O_{10}$ (space group $P2_1/c$)

Atoms Position		x	у	Ζ	occupancy	ΣV	
Cu(1)	4 <i>e</i>	0.3544(4)	0.5137(1)	0.7581(4)	1	1.97	
Cu(2)	4e	0. 4401(3)	0.0030(2)	0.7390(4)	1	2.00	
Cu(3)	4e	0.7605(0)	0.4857(6)	0.7488(5)	1	1.96	
Cu(4)	4e	0.8555(3)	0.0096(1)	0.7547(2)	1	1.96	
Cu(5)	4e	0.9421(5)	0.4726(1)	0.7499(1)	1	1.96	
Pr(1)	4e	0.4344(1)	-0.7494(1)	0.5047(4)	0.4	2.93	
Ca(1)	4e	0.4344(1)	-0.7494(1)	0.5047(4)	0.6		
Pr(2)	4e	-0.6290(3)	0.7611(1)	-0.9881(1)	0.4	2.93	
Ca(2)	4e	-0.6290(3)	0.7611(1)	-0.9881(1)	0.6		
Pr (3)	4e	0.8799(1)	-0.7563(3)	0.9933(2)	0.4	2.96	
Ca(3)	4e	0.8799(1)	-0.7563(3)	0.9933(2)	0.6		
Pr(4)	4e	-0.1783(0)	0.7466(6)	0.0092(1)	0.4	2.93	
Ca(4)	4e	-0.1783(0)	0.7466(6)	0.0092(1)	0.6		
O(1)	4e	0.0500	0.5000	0.3750	1	2.32	
O(2)	4e	0.1500	0.0000	0.3750	1	1.82	
O(3)	4e	0.2500	0.5000	0.3750	1	2.41	
O(4)	4e	0.3500	0.0000	0.3750	1	2.22	
O(5)	4e	0.4500	0.5000	0.3750	1	2.15	
O(6)	4e	0.5500	0.0000	0.3750	1	2.29	
O(7)	4e	0.6500	0.5000	0.3750	1	2.02	
O(8)	4e	0.7500	0.0000	0.3750	1	2.38	
O(9)	4e	0.8500	0.5000	0.3750	1	1.84	
O(10)	4 <i>e</i>	0.9500	0.0000	0.3750	1	1.84	

Note: The temperature factors of (Pr, Ca), Cu and O are fixed at 0.5 Å^2 , 0.7 Å^2 and 1 Å^2 , respectively. ΣV —bond-valences of ions.

Fig. 7. Crystal structure of $Ca_{2.4}Pr_{1.6}Cu_5O_{10}$ in projection alone the *b*-axis.

on the ideal position of Ca₂Y₂Cu₅O₅ structure [29]. The refinement result (see Fig. 6) shows a good agreement between the experimental and the calculated patterns with $R_P = 4.16\%$, $R_{WP} = 5.36\%$, $R_{exp} = 2.10\%$. The final atomic parameters are listed in Table 5. The results of structure analysis indicate that the content of oxygen in unit cell cannot exceed 40 atoms. The projection of the crystal structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ along the *b*-axis is shown in Fig 7. The calculated diffraction intensities by program LAZY are listed in Table 4.

The oxygen ions distribute on y = 0 and 1/2 planes, copper ions deviate slightly from y = 0 to 1/2. Each copper ion is coordinated to 4 oxygen ions and form an infinite $[CuO_{4/2}]$ chain along the *a*-axis. The (Ca, Pr)

ions locate on planes at $y \approx 1/4$ and 3/4 between $[CuO_{4/2}]$ chains. (Ca, Pr) ion and 6 oxygen ions form a distorted octahedron. The structure of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ contain an infinite one-dimensional chain of edge-shared square planar cuprate groups crosslinked by cations Ca and Pr, which occupy sites in the interchain tunnels.

The bond-valences of (Ca, Pr), Cu and oxygen are calculated by Brown's empirical bond valence method [27,28] according to the bond lengths of cation-oxygen listed in Table 5. Their bond-valences basically coincide with their normal chemical values, indicating that the crystal structure of $Ca_{2.4}Pr_{1.6}Cu_5O_{10}$ is reasonable.

4. Conclusions

The subsolidus phase relations of the PrO_x -CaO-CuO pseudo-ternary system sintered at 950–1000°C have been investigated by X-ray powder diffraction. In this system, there exist one compound Ca₁₀Pr₄Cu₂₄O₄₁ and one Ca₂Pr₂Cu₅O₁₀-based solid solution. The system can be divided into seven three-phase regions and two two-phase regions.

The crystal structures of Ca₁₀Pr₄Cu₂₄O₄₁ and Ca₂Pr₂Cu₅O₁₀-based solid solution have been determined. Compound Ca₁₀Pr₄Cu₂₄O₄₁ crystallizes in an orthorhombic cell with space group $D_{2h}^{20} - Cccm$, Z = 4. Its lattice parameters are a = 11.278(2) Å, b = 12.448(3) Å and c = 27.486(7) Å. The crystal structure

of Ca₂Pr₂Cu₅O₁₀-based solid solution is an incommensurate phase based on the orthorhombic NaCuO₂-type subcell. The lattice parameters of Ca_{2.4}Pr_{1.6}Cu₅O₁₀ subcell are $a_0 = 2.8246(7)$ Å, $b_0 = 6.3693(5)$ Å, $c_0 =$ 10.679(1) Å, and its orthorhombic superstructure is with $a = 5a_0$, $b = b_0$, $c = 5c_0$. The Ca_{2.4}Pr_{1.6}Cu₅O₁₀ structure is also determined by using a monoclinic supercell with space group $C_{2h}^5 - P2_1/c$, Z = 4, $a = 5a_0$, $b = b_0$, $c = c_0/\sin\beta$ and $\beta = 104.79(1)^\circ$ or $136.60(1)^\circ$, $V = 5a_0b_0c_0$.

Acknowledgments

This work was supported by the State Key Project on Fundamental Research in China (Grant No. NKBRSF-G19990646) and by the National Natural Science Foundation of China (Grant No. 50272083).

References

- J.G. Bednorz, K.A. Muller, Z. Phys. B- Condens. Matter 64 (1986) 189.
- [2] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58 (1987) 908.
- [3] Z.X. Zhao, L.Q. Chen, Q.S. Yang, Y.Z. Huang, G.U. Chen, R.M. Tang, C.G. Liu, L. Chen, Kexue Tongbao 32 (1987) 681.
- [4] D.G. Hinks, L. Soderholm, D.W. Caponell, J.D. Jorgense, I.K. Schuller, C.U. Segre, K. Zhang, J.D. Grace, Appl. Phys. Lett. 50 (1987) 1688.
- [5] P. Marsh, R.M. Fleming, M.L. Mandich, A.M. Desantolo, J. Kwo, M. Hong, L.J. Martinez-Miranda, Nature 334 (1988) 141.
- [6] P. Bordet, C. Chaillout, J. Chenavas, J.L. Hodeau, M. Marezio, J. Karpinski, E. Kaldis, Nature 334 (1988) 569.
- [7] M.B. Maple, Y. Dalichaouch, J.M. Ferreira, R.R. Hake, B.W. Lee, J.J. Neumeier, M.S. Torikachvili, K.N. Yang, H. Zhou, R.P. Guertin, M.V. Kuric, Physics B 148 (1987) 155.
- [8] D.E. Morris, J.H. Nickel, J.Y.T. Wei, N.G. Asmar, J.S. Scoot, U.M. Scheven, C.T. Hultgren, A.G. Markely, Phys. Rev. B 39 (1989) 7347.

- [9] T. Kogure, R. Kontra, G.J. Yurek, J.B.V. Sandel, Physica C 156 (1988) 45.
- [10] D.E. Morris, N.G. Asmar, J.Y.T. Wei, J.H. Nickel, R.L. Sid, J.S. Scott, J.E. Post, Phys. Rev. B 40 (1989) 11406.
- [11] Y.S. Yao, Y.F. Xiong, D. Jin, I.W. Li, F. Wu, J.K. Luo, Z.X. Zhao, Physica C 282–287 (1997) 49.
- [12] K.Q. Li, Y.S. Yao, D.H. Cao, G.C. Che, S.L. Jia, Y.M. Ni, C. Dong, Z.X. Zhao, Physica C 341–348 (2000) 583.
- [13] G.B. Song, J.K. Liang, L.T. Yang, J.R. Chen, G.Y. Liu, H.F. Yang, G.H. Rao, Appl. Phys. A 77 (2003) 915.
- [14] H. Haas, E. Krdes, Z. Kristallogr. 129 (1969) 259
- [15] J. Gopalkrishnam, M.A. Subramanian, C.C. Torradi, J.P. Attfield, A.W. Sleight, Mater. Res. Bull. 24 (1989) 321.
- [16] P.A. Tikhonov, M.V. Kravchinskaya, A.K. Kuznetsov, A.A. Safonov, E.F. Zhikhareva, Inorg. Mater. 19 (1983) 1887 (in Russian).
- [17] C.L. Teske, H. Muller-Buschbaum, Z. Anorg. Allg. Chem. 370 (1970) 134.
- [18] N. Kobayashi, Z. Hiroi, M. Takano, J. Solid State Chem. 132 (1997) 274.
- [19] J.K. Liang, J. Chen, F. Wu, S.S. Xie, Solid State Commun. 75 (1990) 247.
- [20] A.M.M. Gadalla, J. White, In: E. M. Levin, C.R. Robbins, H.F. Phase (Eds.), Diagrams for Ceramist, 2nd Edition, Fig. 2105, Amer. Ceramic. Soc., Columbus, 1969 (Mcmurdie).
- [21] N.E. Brese, M. Okeeffe, R.B. VonDreele, V.G. Young, J. Solid State Chem. 83 (1989) 1.
- [22] T. Siegrist, R.S. Roth, C.J. Rawn, J.J. Ritter, Chem. Mater. 2 (1990) 192.
- [23] J. Pickardt, W. Paulus, M. Schmalz, R. Schollhorn, J. Solid State Chem. 89 (1990) 308.
- [24] P.E. Werner, J. Appl. Cryst. 9 (1976) 216;
 P.-E. Werner, L. Eriksson, M. Westdahl, J. Appl. Cryst. 18 (1985) 367.
- [25] E.M. McCarron Ø, M.A. Subramanian, J.C. Calabrese, R.L. Harlow, Mater. Res. Bull. 23 (1988) 1355.
- [26] R.A. Young, A. Sakthivel, T.S. Moss, C.O. Paive-Santos, J. Appl. Cryst. 28 (1995) 366.
- [27] I.D. Brown, in: M. O'Keeffe, A. Navrotsky (Eds.), Structure and Bonding in Crystals II, Academic Press, New-York, 1981, pp. 1–30.
- [28] N.E. Brese, M. O'Keeffe, Acta Crystallogr. B 47 (1991) 192.
- [29] P.K. Davis, J. Solid State Chem. 95 (1991) 365.
- [30] C.Q. Han, G.B. Song, X.L. Chen, J.K. Liang, G.H. Rao, J. Solid State Chem. 173 (2003) 164.